- gas constant, cm³ torr/(mol K) R
- Τ temperature, K
- V liquid molar volume, cm3/mol
- X. V liquid and vapor molar fractions, respectively

Greek Letters

γ	activity	coeff	icients
ρ	density	1/V,	mol/cm ³

Subscripts

1,	2	components	1	and 2	respectively
٦,	2	components		anu z,	respectively

1, 1 components i and j, respectively

exptl, experimental or calculated guantity, respectively calcd

Superscripts

- L liquid-phase property
- V vapor-phase property
- at infinite diluted conditions ω

Literature Cited

- (1) Muthu, O.; Maher, P. J.; Smith, B. D. J. Chem. Eng. Data 1980, 25, 163.
- (2) Krishna, C.; Tripathi, R. P.; Rawat, B. S. J. Chem. Eng. Data 1980. 25, 11.
- (3) Raghunath, P.; Tripathi, R. P.; Asselineau, L. J. Chem. Eng. Data 1975, 20, 33. (4)
- Palmer, D. A.; Smith, B. D. *J. Chem. Eng. Data* **1972**, *17*, 71. Stage, H.; Fisher, W. G. *GIT Fachz. Lab.* **1968**, *12*, 1167. Christiansen, L. J.; Fredenslund, Aa. *AIChE J.* **1975**, *21*, 49.
- (5)
- Grausø, L. Ph.D. Dissertation, Instituttet for Kemiteknit Danmards Tek-(7)
- niske Hojshole, Lyngby, Denmark, 1977. O'Conneil, J. P.; Prausnitz, J. M. Ind. Eng. Chem. Process Des. Dev. (8) 1967, 6, 246.
- Monfort, J. P.; Rojas, L. Fluid Phase Equilib . 1978, 2, 181.
- Ellis, S. R. M.; Jonah, D. A. Chem. Eng. Slc. 1962, 17, 971
- (11) Eckert, C. A.; Newman, B. A.; Nicolaides, G. L.; Long, T. C. AIChE J. 1981, 27, 33.
- (12) Maher, P. J.; Smith, B. D. Ind. Eng. Chem. Fundam. 1979, 18, 354.

Received for review July 23, 1981. Accepted June 14, 1982. I appreciate the partial financial support provided for this work by CONACYT under project 1333.

Isothermal Vapor-Liquid Equilibria in Binary Systems Formed by **Esters with Alkenes**

Jürgen Gmehling

Lehrstuhl für Technische Chemie B, Universität Dortmund, D 4600 Dortmund, Federal Republic of Germany

Since no vapor-liquid equilibrium (VLE) data are available for ester-alkene systems, isothermal vapor-liquid equilibrium data have been measured for the binary systems methyl acetate-1-hexene (50 °C), 1-hexene-ethyl acetate (60 °C), ethyl acetate-1-octene (75 °C), and butyl acetate-1-decene (90 °C). Thermodynamic consistency was checked by two methods and the data were correlated by using different expressions for the excess Gibbs energy. The data were used for the determination of the C==C-CCOO interaction parameters of the UNIFAC method, which are important, e.g., for the prediction of the VLE behavior of vinyl acetate systems.

Introduction

Design of distillation columns requires the knowledge of vapor-liquid equilibria. With the recent expressions for the excess Gibbs energy (e.g., Wilson (18), NRTL (19), UNIQUAC (20)) multicomponent systems can be described by using binary data alone. Although a lot of binary data have been published (1-3), there is often a lack of data. In these cases the real behavior of the missing binary data must be estimated by using prediction methods, such as the group contribution methods ASOG (4, 5) or UNIFAC (6-9). In these methods, the mixture is assumed to consist not of molecules but of the functional groups which, when added, form the parent molecules. This has the advantage that a large number of mixtures of interest in chemical technology can be described in terms of relatively few parameters characterizing the interaction between the groups.

These parameters have to be determined from experimental information. In the case of the UNIFAC method, the whole information of the Dortmund Data Bank (10, 11) has been used. In spite of the large data base there are a lot of gaps

Table I. Pure Components

component	supplier	type of column	grade of purifica- tion, %
1-hexene	EGA Chemie	а	>99.99
1-octene	Merck AG	а	>99.99
1-decene	Merck AG	а	>99.99
methyl acetate	DEGUSSA	b	>99.99
ethyl acetate	Merck AG	Ь	>99.99
butyl acetate	Riedel de Haen	b	>99.99

^a Wire band column (length, 1000 mm; number of theoretical plates, approximately 55). ^b Packed column (diameter, 30 mm; length, 1000 mm; SS 316-helix packing).

in the parameter table for group combinations where no data (or no reliable data) are available in the literature.

The purpose of this investigation was to enable determination of the interaction parameters between the C==C and the CCOO group and thus fill one of the gaps in the UNIFAC parameter table. Therefore, the above-mentioned binary systems have been measured.

Experimental Section

Purification of the Components. All chemicals were obtained from commercial sources and were further purified by rectification in a packed or a wire band column, and the purity was tested by gas chromatography. Table I shows the supplier of the different chemicals and the grade of purification.

Analysis. Liquid and vapor compositions were determined with a digital densimeter (DMA02D by Heraeus/Paar). It was calibrated by using air and doubly distilled water. The density measurement was carried out at 20 \pm 0.01 °C. The precision at this temperature was better than 10⁻⁴ g/cm³. The calibration curves were attained by measuring weighed samples of the

Table II. Experimental Data and Fitted Parameters for the System Methyl Acetate (1)-1-Hexene (2) at 50 $^{\circ}$ C

	A	12	A 21	α ₁₂	mean dev in y
Margules	0.	8399	1.0720		0.0047
Van Laar	0.	8468	1.0838		0.0047
Wilson	473.	8652	259.2210		0.0047
NRTL	619.	9473	80.0781	0.2980	0.0047
UNIQUA	C 43.	0213	180.6381		0.0047
UNIFAC					0.0201
P, mmHg	<i>x</i> ₁	<i>y</i> ₁	P, mmHg	<i>x</i> ₁	<i>y</i> ₁
485.18	0.0	0.0	696.75	0.5417	0.5775
493.09	0.0085	0.0239	698.63	0.6159	0.6172
505.35	0.0250	0.0648	696.00	0.6967	0.6640
539.33	0.0686	0.1599	690.45	0.7611	0.7039
568.95	0.1087	0.2278	680.18	0.8163	0.7455
586.50	0.1369	0.2679	671.70	0.8557	0.7814
609.56	0.1820	0.3228	660.86	0.8904	0.8167
630.00	0.2285	0.3695	652.12	0.9143	0.8477
654.56	0.2948	0.4259	641.55	0.9344	0.8751
666.45	0.3407	0.4592	630.83	0.9506	0.9008
683.74	0.4147	0.5064	617.93	0.9696	0.9354
689.33	0.4627	0.5345	595.05	1.0000	1.0000

Table III. Experimental Data and Fitted Parameters for the System 1-Hexene (1)-Ethyl Acetate (2) at 60 $^{\circ}$ C

	A	12	A 21	α ₁₂	mean dev in y
Margules	0.	6600	0.6817		0.0044
Van Laar	0.	6595	0.6822		0.0044
Wilson	55.	0482 4	432.7491		0.0044
NRTL	272.	9532 :	196.3981	0.3006	0.0044
UNIQUA	C 200.	2223 -	-52.7351		0.0044
UNIFAC					0.0086
P, mmHg	<i>x</i> ₁	\mathcal{Y}_1	P, mmHg	<i>x</i> ₁	\mathcal{Y}_1
420.60	0.0	0.0	639.00	0.4271	0.5655
436.84	0.0181	0.0536	651.90	0.4852	0.6042
451.50	0.0332	0.0935	666.64	0.5632	0.6542
468.26	0.0545	0.1431	676.95	0.6198	0.6896
481.50	0.0725	0.1813	684.49	0.6802	0.7283
504.75	0.1062	0.2424	689.70	0.7367	0.7663
524.59	0.1378	0.2915	694.05	0.7995	0.8111
546.75	0.1768	0.3438	694.95	0.8499	0.8504
568.13	0.2211	0.3945	693.34	0.8923	0.8867
592.65	0.2778	0.4463	690.90	0.9330	0.9254
608.18	0.3201	0.4861	687.53	0.9757	0.9713
624.00	0.3722	0.5267	685.50	1.0000	1.0000

binary alkene-ester mixture. The measurements of the density (composition) of the equilibrium samples were repeated more than twice.

Vapor – Liquid Equilibrium Measurements. Vapor – liquid equilibrium measurements were performed for four binary systems at isothermal conditions, where as pressure measurement device a precision mercury manometer (Wallace and Tiernan) was used as described in ref 12.

Equilibrium was attained in an all-glass equilibrium still with circulation of both the vapor and liquid phases. The apparatus has been described earlier (12). For each data point approximately 45 min elapsed before equilibrium was attained and samples were taken by syringes.

The obtained data were checked for thermodynamic consistency by using the integral test (13) and the point-to-point test developed by Van Ness et al. (14) and modified by Christiansen and Fredenslund (15).

All data sets passed the consistency tests with good results using the criteria given in (3).

Results

The experimental data and the fitted parameters for the Margules (16), Van Laar (17), Wilson (18), NRTL (19) and

Table IV. Experimental Data and Fitted Parameters for the System Ethyl Acetate (1)-1-Octene (2) at 75 $^\circ C$

	A	12		A 21	α ₁₂	mean dev in y
Margules	0.4	4532		0.5879		0.0031
Van Laar	0.4	4606		0.5865		0.0030
Wilson	349.	6978	6	0.2397		0.0030
NRTL	487.	0795	-7	7.2810	0.2974	0.0030
UNIQUA	C -58.	3286	17	8.3416		0.0030
UNIFAC						0.0087
P, mmHg	<i>x</i> ₁	<i>y</i> ₁		P, mmHg	x 1	У ₁
169.50	0.0	0.0		443.20	0.3480	0.7234
172.00	0.0031	0.018	86	483.30	0.4254	0.7669
183.80	0.0154	0.088	36	507.30	0.4705	0.7907
194.60	0.0269	0.147	73	530.40	0.5147	0.8125
212.10	0.0447	0.229	91	590.00	0.6632	0.8770
231.00	0.0640	0.301	15	610.00	0.7141	0.8951
256.90	0.0918	0.386	59	628.20	0.7647	0.9140
282.60	0.1201	0.457	74	648.70	0.8150	0.9320
315.50	0.1595	0.533	36	663.40	0.8602	0. 9 477
348.70	0.2031	0.594	41	673.25	0.8909	0.9585
376.60	0.2409	0.637	79	685.05	0.9238	0.9710
399.50	0.2780	0.671	10	711.00	1.0000	1.0000
421.20	0.3083	0.696	56			

Table V.	Experimental	Data and	Fitted 1	Parameters i	for the
System Bu	tyl Acetate (1)-1-Decar	ne (2) ar	t 90 °C	

				4		mean dev
_		/	4 ₁₂	A 21	α12	in y
	Margules	(0.3732	0.4126		0.0039
	Van Laar	(0.3757	0.4112		0.0039
	Wilson	340	6.0209	-43.9474		0.0039
	NRTL	25	9.7746	38.0567	0.3004	0.0039
	UNIQUA	C -11	3.4702	194.6985		0.0039
	UNIFAC					0.0067
_	P, mmHg	<i>x</i> ₁	\mathcal{Y}_1	P, mmHg	<i>x</i> ₁	<i>y</i> ₁
	55.24	0.0	0.0	175.00	0.5725	0.8400
	59.85	0.0174	0.0952	174.80	0.5780	0.8417
	65.60	0.0392	0.1920	182.80	0.6299	0.8640
	75.86	0.0805	0.3335	186.70	0.6796	0.8854
	86.75	0.1234	0.4394	192.84	0.6982	0.8906
	89.80	0.1365	0.4630	202.00	0.7454	0.9138
	99.95	0.1727	0.5316	203.00	0.7535	0.9117
	109.09	0.2193	0.5942	205.77	0.7848	0.9239
	120.90	0.2730	0.6542	212.13	0.8204	0.9362
	126.35	0.3103	0.6797	212.38	0.8288	0.9390
	129.05	0.3161	0.6 9 85	216.75	0.8607	0.9500
	135.75	0.3458	0.7178	220.00	0.8804	0.9575
	140.76	0.3808	0.7364	221.25	0.8917	0.9618
	141.55	0.3810	0.7402	225.20	0.9223	0.9730
	148.70	0.4205	0.7637	227.40	0.9320	0.9771
	158.05	0.4688	0.7948	233.35	0.9650	0.9888
	157.90	0.4715	0.7922	236.20	1.0000	1.0000
	166.90	0.5258	0.8188			

Table VI. Pure-Component Properties

component i	vi	r _i	gi
1-hexene	125.90	4.2697	3.644
1-octene	157.86	5.6185	4.724
I-decene	190.35	6.9673	5.804
methyl acetate	79.84	2.8042	2.576
ethyl acetate	98.49	3.4786	3.116
butyl acetate	132.55	4.8274	4.196

UNIQUAC (20) equations are given in Tables II-V together with the mean deviation of the vapor-phase mole fraction.

For fitting the parameters, we used the obtained pure-component vapor pressure and the following objective function F:

$$F = \sum_{i}^{\text{NDP NC}} \sum_{j}^{\text{NC}} [(\gamma_{i,\text{exptl}} - \gamma_{i,\text{calcd}}) / \gamma_{i,\text{exptl}}]^2$$

Figure 1. y-x diagram for the system methyl acetate (1)-1-hexene (2) at 50 °C.

Figure 2. y-x diagram for the system 1-hexene (1)-ethyl acetate (2) at 60 °C.

where NDP = number of data points, NC = number of components, and vapor-phase ideality was assumed. For the equation based on the local composition concept (2, 3) A_{ij} in Tables II-V has the following meaning: Wilson, $A_{ij} = (\lambda_{ij} - \lambda_{ij})$ cal/mol; NRTL, $A_{ij} = (g_{ij} - g_{jj})$ cal/mol; UNIQUAC, $A_{ij} = (u_{ij} - u_{ij})$ cal/mol. The required pure-component properties for the Wilson and UNIQUAC equations are given in Table VI.

Figures 1–4 show the y-x diagrams of the different systems, where the experimental data are given by the plus sign and the calculated results are represented by the continuous line. The calculated values were always generated by using the model which gave the lowest mean deviation between the experimental and calculated vapor-phase mole fractions.

Furthermore, in all diagrams the calculated activity coefficients at infinite dilution are given for the chosen model. In the systems methyl acetate-1-hexene and 1-hexene-ethyl acetate azeotropic behavior was found.

Figure 3. y - x diagram for the system ethyl acetate (1)–1-octene (2) at 75 °C.

Figure 4. y-x diagram for the system butyl acetate (1)-1-decene (2) at 90 °C.

All these data were used to determine the missing group interaction parameters between the C—C and the ester group for the UNIFAC method (9). The new UNIFAC parameters are

$$a_{c=c,ccoo} = 71.23 \text{ K}$$
 $a_{ccoo,c=c} = 269.3 \text{ K}$

All other group interaction parameters were taken from ref 9. The mean deviations in the vapor-phase mole fraction using these parameters are given in Tables II–V for the different binary systems.

Acknowledgment

I thank Professor Dr. U. Onken for his active interest in this work and G. Friedrich for his technical assistance.

Glossary

- Aparameters used in the Margules, van Laar, Wilson,
NRTL, and UNIQUAC equationsFobjective function

u_{ii}

- interaction parameter in the NRTL equation g_{ij}
 - interaction parameter in the UNIQUAC equation
- mole fraction of component i in the liquid phase \boldsymbol{X}_{i}
- mole fraction of component i in the vapor phase Yi
- liquid molar volume of component i V_i
- relative van der Waals volume of component i r_i
- relative van der Waals surface area of component q_i

Greek Letters

- nonrandomness parameter in NRTL equation α_{12}
- activity coefficient of component i γ_{I}
- λ_{ij} interaction parameter in the Wilson equation

Subscripts

expti	experimental
calcd	calculated

Superscript

8 value at infinite dilution

Registry No. 1-Hexene, 592-41-6; 1-octene, 111-66-0; 1-decene, 872-05-9; methyl acetate, 79-20-9; ethyl acetate, 141-78-6; butyl acetate, 123-86-4.

Literature Cited

(1) Wichterle, I.; Linek, J.; Hala, E. "Vapor-Liquid Equilibrium Data Bibliography"; Elsevier: Amsterdam, 1973; 4 parts

- (2) Gmehling, J.; Onken, U. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA Chemistry Data Series: Frankfurt, 1977/78; Vol. I, Part 1, 2a.
- (3) Gmehling, J.; Onken, U.; Arlt, W.; Grenzheuser, P.; Weidlich, U. "Vapor-Liquid Equilibrium Data Collection"; DECHEMA Chemistry Data Series; Frankfurt, 1978; Vol. I, 10 parts.
- (4) Derr, E. L.; Deal, C. H. J. Chem. Eng. Symp. Ser. No. 32, 1969, 3, 40.
- Kojima, K.; Tochigi, K. "Prediction of Vapor-Liquid Equilibria by the (5) ASOG Method': Kodansha: Tokyo, 1979. (6) Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. AIChE J. 1975, 21.
- 1086.
- Toss.
 Fredenslund, A.; Gmehling, J.; Rasmussen, P. "Vapor-Liquid Equilibria Using UNIFAC"; Elsevier: Amsterdam, 1977.
 Skjold-Jørgensen, S.; Kolbe, B.; Gmehling, J.; Rasmussen, P. Ind. Eng. Chem., Process Des. Dev. 1979, 18, 714.
 Gmehling, J.; Rasmussen, P.; Fredenslund, A. Ind. Eng. Chem., Pro-cess Des. Dev. 1982, 21, 118.
 Orsking L.; Oktor U. Actt. W., presented of the 97th AIChE Mant
- (10) Gmehling, J.; Onken, U.; Arit, W., presented at the 87th AIChE Meet-
- ing, Boston, MA, 1979.
 Onken, U.; Gmehling, J.; Arit, W., presented at the 2nd International Conference on Phase Equilibria and Fluid Properties in Chemical In-
- dustry, Berlin, 1980.
- (12) Gmehling, J.; Onken, U.; Schulte, H. W. J. Chem. Eng. Data 1980, *25*, 29.
- (13)
- Redlich, O.; Kister, A. T. *Ind. Eng. Chem.* **1948**, *40*, 341. Van Ness, H. C.; Byer, S. M.; Gibbs, R. E. *AIChE J.* **1973**, *19*, 238. Christiansen, L. J.; Fredenslund, A. *AIChE J.* **1975**, *21*, 49. (14)
- (15) (16) Margules, M. Sitzungsber. Akad. Wiss., Wien 1895, 104, 1243.
- Van Laar, J. J. Z. Phys. Chem. 1910, 72, 723 (17)

- (18) Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.
 (19) Renon, H.; Prausnitz, J. M. AIChE J. 1968, 14, 135.
 (20) Abrams, D. S.; Prausnitz, J. M. AIChE J. 1975, 21, 116.

Received for review October 6, 1981. Revised manuscript received July 19, 1982. Accepted August 12, 1982. I thank the "Bundesministerium für Forschung und Technologie" and Celanese Co., Corpus Christi, TX, for support of this work.

Gibbs Excess Free Energy of Methylcyclohexane + Benzene and Methylcyclohexane + Toluene Mixtures at 348.15 K

M. Diaz-Peña,* A. Crespo-Colin, and A. Compostizo

Departamento de Química Fisica, Facultad de Ciencias Químicas, Universidad Complutense, Madrid 3, Spain

Vapor pressures as a function of composition and at 348.15 K were measured for the binary mixtures consisting of methylcyclohexane + benzene (MC + B) and methylcyclohexane + toluene (MC + T). Values for the Gibbs excess free energy for these mixtures were calculated and the results compared to those predicted by applying Flory's theory to the same mixtures and other binary mixtures made up of either n-heptane or methylcyclohexane $+ o_{-}, + m_{-}, and + p_{-}xylenes.$

This paper deals with alicyclic + aromatic hydrocarbon binary mixtures. In particular we have selected methylcyclohexane + benzene (MC + B) and + toluene (MC + T) as representative mixtures.

Liquid-vapor equilibrium data allow calculation of Gibbs excess free energy, G^{E} , a characteristic thermodynamic quantity suitable to study thermodynamic properties of liquid solutions.

Thus, we have measured at 348.15 K total vapor pressures. p, for the two aforementioned systems as a function of liquid and vapor composition, x and y, respectively, and throughout the whole concentration range.

The data herein contained and others previously published (1, 2) for *n*-heptane and methylcyclohexane with o_{-} , m_{-} , and p-xylenes can be used to check liquid solution theories. From them, we have selected Flory's theory (3, 4) as the most sensitive to G^E value changes.

Experimental Results

Vapor pressure was measured by a dynamic method. The ebulliometer was similar to one described in a previous paper (5).

The sources of the chemicals were the following: methylcyclohexane from Hopkin and Williams (for chromatography), benzene from Carlo Erba (for chromatography), and toluene from Merck (Uvasol). They were further purified by fractional distillation in a 35-theoretical-plate column at a 120 reflux ratio. Only the middle fraction was used, after it was dried over sodium wire. Purity of the used products, estimated by GLC using a flame ionization detector, was better than 99.8 mol %. The density at 298.15 K, the refractive index at 303.15 K, and the vapor pressure at various temperatures were reported earlier (2, 6, 7) where the data were compared to similar ones available in the published literature. Individual vapor pressure measurements are accurate to ± 7 Pa, mole fractions to ± 5 \times 10⁻⁴, and temperature to ±0.01 K. It is estimated that G^E is accurate to better than 2.1 J mol-1 for the MC + B system and to better than 0.9 J mol⁻¹ for the T + MC system.

Vapor- and liquid-phase composition at equilibrium was determined by refractive index measurements, $n_{\rm D}$, at 303.15 K. This meant that we had to obtain first a calibrated curve of $n_{\rm D}$